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Abstract. The statistical pattern recognition based on Bayes formula
implies the concept of mutually exclusive classes. This assumption is
not applicable when we have to identify some non-exclusive properties
and therefore it is unnatural in biological neural networks. Considering
the framework of probabilistic neural networks we propose statistical
identification of non-exclusive properties by using one-class classifiers.
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1 Introduction

The statistical approach is known to enable general and theoretically well justi-
fied decision making in pattern recognition. Given the probabilistic description
of the problem in terms of class-conditional probability distributions, we can
classify objects described by discrete or continuous variables. The Bayes formula
provides full classification information in terms of a posteriori probabilities of a
finite number of classes. A unique decision, if desirable, can be obtained by means
of Bayes decision function which minimizes the probability of error. We recall
that the classification information contained in the a posteriori probabilities is
partly lost if only a unique decision is available [5].

On the other hand, introducing Bayes formula, we assume that the uncondi-
tional distribution of the recognized data vectors can be expressed as a weighted
sum of class-conditional distributions, according to the formula of complete prob-
ability. In this way we implicitly assume the classes to be mutually exclusive.
Nevertheless, the probabilistic classes may overlap in the sample space, they are
mutually exclusive just in the sense of the complete probability formula.

The abstract statistical concept of mutually exclusive classes is rather unnat-
ural in biological systems since most real life categories are non-exclusive. In
this respect the multiclass Bayes decision scheme is unsuitable as a theoretical
background of neural network models. In the following we use the term prop-
erty to emphasize the fact that the recognized object may have several different
properties simultaneously. In order to avoid the strict assumption of mutually
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exclusive classes we propose recognition of properties by probabilistic neural net-
works based on one-class classifiers. We assume that for each property there is
a single training data set. To identify a property we evaluate the log-likelihood
ratio of the related conditional probability distribution and of the product of un-
conditional univariate marginals. Hence the only information about alternative
properties is assumed to be given in the form of global marginal distributions of
all involved variables. The proposed recognition of properties has two qualitative
advantages from the point of view of biological compatibility: a) it is applicable
both to the non-exclusive and exclusive properties (cf. Sec. 5) and b) provides a
unified approach to recognition of properties and feature extraction (cf. [4]).

The concept of probabilistic neural networks (PNNs) relates to the early work
of Specht [10] who proposed a neural network model closely related to the non-
parametric Parzen estimates of probability density functions. In comparison with
other neural network models the PNN of Specht may save training time essen-
tially but, according to Parzen formula, one neuron is required for each training
pattern. Moreover, there is a crucial problem of the optimal smoothing of Parzen
estimates in multidimensional spaces. The PNN approach of Specht has been
modified by other authors and, in some cases, simplified by introducing finite
mixtures [9]. In this paper we refer mainly to our results on PNNs published in
the last years (cf. [3] - [6]). Unlike previous authors we approximate the class-
conditional probability distributions by finite mixtures of product components.
The product-mixture-based PNNs do not provide a new technique of pattern
recognition but they may contribute to better understanding of the functional
principles of biological neural networks [3], [4].

In the following we first discuss the theoretical differences between multiclass
classifiers (Sec. 2) and one-class identification of properties (Sec. 3). In Sec. 4 we
summarize basic features of probabilistic neural networks and their application
to identification of properties. In Sec. 5 we compare both schemes in application
to recognition of handwritten numerals.

2 Multiclass Bayes Decision Scheme

Considering the statistical pattern recognition we assume that some multivariate
observations have to be classified with respect to a finite set of mutually exclusive
classes Ω = {ω1, . . . , ωK}. The observation vectors x = (x1, x2, . . . , xN ) ∈ X
from the N -dimensional space X (which may be real, discrete or binary) are
supposed to occur randomly according to some class-conditional distributions
P (x|ω) with a priori probabilities p(ω), ω ∈ Ω. Recall that, given an observation
x ∈ X , all statistical information about the set of classes Ω is expressed by the
Bayes formula for a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, P (x) =

∑

ω∈Ω

P (x|ω)p(ω), x ∈ X (1)

where P (x) is the joint unconditional probability distribution of x.
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The posterior distribution p(ω|x) may be used to define a unique final decision
by means of the Bayes decision function 1

d : X → Ω, d(x) = arg max
ω∈Ω

{p(ω|x)}, x ∈ X (2)

which is known to minimize the probability of classification error.
Remark 2.1. The Bayes decision function is a typical multiclass classifier di-
rectly identifying one of a finite number of classes on output. A weak point
of Bayes classification is the unknown probabilistic description to be estimated
from training data. In multidimensional spaces the number of training samples is
usually insufficient to estimate the underlying distributions reliably and, in case
of large data sets, even the computational complexity may become prohibitive.

Alternatively there are numerous non-statistical methods like support vector
machines, AdaBoost, back-propagation perceptron and others having proved
to yield excellent results in different practical problems. Unlike Bayes formula
they are typically based on complex separating surfaces suitable to distinguish
between two classes. In such a case the multiclass problems have to be reduced to
multiple binary problems. It is possible to construct individual binary classifier
for each class (one-against-all approach), to distinguish each pair of classes (all-
pairs method) [8], or to use a more general method of error-correcting output
codes which can utilize binary classifiers for all possible partitions of the set
of classes [2]. We recall that, by nature of the underlying separating planes,
multiclass solutions based on binary classifiers are discrete and therefore the a
posteriori probabilities, if desirable, have to be approximated by heuristic means.
There is no exact relation to the probability of classification error, usually the
learning algorithm minimizes some heuristic criterion (e.g. a margin-based loss
function [1]). As it can be seen, from the point of view of “binary” approximating
multiclass decision functions, the concept of properties is basically irrelevant. �

3 Identification of Properties

In case of non-exclusive classes we assume that the multivariate observations may
have some properties from a finite set Θ = {θ1, . . . , θK}. Considering a single
property θ ∈ Θ we are faced with a two-class (binary) decision problem. For any
given sample x ∈ X we have to decide if the property is present or not. In other
words, the decision is positive, (θ) if the property has been identified and negative,
(θ̄) if it has not been identified. Since both alternatives are mutually exclusive,
we can solve the binary classification problem in a standard statistical way. In
full generality we denote p(θ) the a priori probability that the property θ occurs
and p(θ̄) = 1 − p(θ) denotes the complementary a priori probability that the
property is missing. Analogously, we denote P (x|θ) and P (x|θ̄) the conditional
probability distributions of x ∈ X given the property θ and θ̄ respectively. Thus,
given the probabilistic description of a binary problem {θ, θ̄} we can write

P (x) = P (x|θ)p(θ) + P (x|θ̄)p(θ̄), x ∈ X , (p(θ̄) = 1 − p(θ)) (3)
1 Here and in the following we assume that possible ties are uniquely decided.
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and by using Bayes formula

p(θ|x) =
P (x|θ)p(θ)

P (x)
, p(θ̄|x) =

P (x|θ̄)p(θ̄)
P (x)

. (4)

we obtain the related decision function in the form

Δ : X → {θ, θ̄}, Δ(x) =
{

θ, p(θ|x) ≥ p(θ̄|x),
θ̄, p(θ|x) < p(θ̄|x), x ∈ X . (5)

Remark 3.1. As mentioned earlier (cf. Remark 2.1), the problem of mutually
exclusive classes can be formally decomposed into a set of “one-against-all” bi-
nary classification problems. If we define for each class ωk ∈ Ω the property
θ = {ωk} and the opposite property, θ̄ = Ω \ {ωk}, then we can construct the
two corresponding components P (x|θ)p(θ) and P (x|θ̄)p(θ̄) in terms of the class
conditional distributions P (x|ω). In particular, we can write

P (x|θ)p(θ) = P (x|ωk)p(ωk), p(θ) = p(ωk), (6)

P (x|θ̄)p(θ̄) =
∑

ω∈Ωk

P (x|ω)p(ω), p(θ̄) =
∑

ω∈Ωk

p(ω), Ωk = Ω \ {ωk}. (7)

Expectedly, the classification accuracy of the multi-class decision function (2)
may be different from that of the binary decision functions (5) based on the
distributions (6) and (7). We discuss the problem in Sec. 4 in detail. �

Let us recall that by introducing binary classifiers we assume the training data
to be available both for the property θ and for its opposite θ̄. Unfortunately, in
real life situations it is often difficult to characterize the negative property θ̄ and
to get the corresponding representative training data. In such cases the binary
classifier (5) cannot be used since the probabilistic description of the negative
property is missing. In this sense the identification of properties is more naturally
related to one-class classifiers [11], [12] when only a single training data set for
the “target” class is available.

Given some training data set Sθ for a property θ ∈ Θ, we can estimate the
conditional distribution P (x|θ) and the property θ could be identified by simple
thresholding. Nevertheless, the choice of a suitable threshold value is difficult
if any information about the opposite property θ̄ is missing [12]. In the follow-
ing we assume a general “background” information in the form of unconditional
marginal distributions Pn(xn) of the variables xn which is applicable to all prop-
erties θ ∈ Θ. This approach is motivated by the underlying PNN framework since
the information about the unconditional marginal probabilities Pn(xn) may al-
ways be assumed to be available at the level of a single neuron.

In order to identify a property θ ∈ Θ we propose to use a one-class-classifier
condition based on the log-likelihood ratio

πθ(x) = log
P (x|θ)∏

n∈N Pn(xn)
≥ ε. (8)
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Note that asymptotically the mean value of the criterion πθ(x) converges to
the Kullback-Leibler discrimination information between the two distributions
P ∗(x|θ) and

∏
n∈N Pn(xn)

π̄θ =
1

|Sθ|
∑

x∈Sθ

log
P (x|θ)∏

n∈N Pn(xn)
→

∑

x∈X
P ∗(x|θ) log

P ∗(x|θ)∏
n∈N Pn(xn)

. (9)

The last expression is nonnegative and for independent variables it is zero. In this
sense it can be interpreted as a measure of dependence of the involved variables
distributed by P ∗(x|θ) (cf. [3]).

We recall that the criterion πθ(x) does not depend on the a priori probability
p(θ). The property θ ∈ Θ is identified if the probability P (x|θ) is significantly
higher than the corresponding product probability

∏
n∈N Pn(xn). The threshold

value ε in (8) can be related to the log-likelihood function of the estimated
distribution P (x|θ) (cf. (21)). Thus the only information about the negative
properties θ̄ is contained in the unconditional product distribution

∏
n∈N Pn(xn)

which implies the assumption of independence of the variables xn.

4 Probabilistic Neural Networks

Considering PNNs we approximate the class-conditional distributions P (x|ω) by
finite mixtures of product components

P (x|ω) =
∑

m∈Mω

F (x|m)f(m), F (x|m) =
∏

n∈N
fn(xn|m). (10)

Here Mω are the component index sets of different classes, N = {1, . . . , N} is
the index set of variables, f(m) are probabilistic weights and F (x|m) are the
products of component specific univariate distributions fn(xn|m).

In order to avoid the biologically unnatural complete interconnection of neu-
rons we have introduced the structural mixture model [5], [6]. In particular,
considering binary variables xn ∈ {0, 1}, we define

F (x|m) = F (x|0)G(x|m, φm)f(m), m ∈ Mω (11)

where F (x|0) is a “background” probability distribution defined as a fixed prod-
uct of global marginals

F (x|0) =
∏

n∈N
fn(xn|0) =

∏

n∈N
ϑxn

0n(1 − ϑ0n)1−xn , (ϑ0n = P{xn = 1}) (12)

and the component functions G(x|m, φm) include additional binary structural
parameters φmn ∈ {0, 1}

G(x|m, φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

=
∏

n∈N

[(
ϑmn

ϑ0n

)xn
(

1 − ϑmn

1 − ϑ0n

)1−xn
]φmn

.

(13)
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The main advantage of the structural mixture model is the possibility to confine
the decision making only to “relevant” variables. Making substitution (11) in
(6), we can express the probability distributions P (x|ω), P (x) in the form

P (x|ω) =
∑

m∈Mω

F (x|m)f(m) = F (x|0)
∑

m∈Mω

G(x|m, φm)f(m), (14)

P (x) =
∑

ω∈Ω

p(ω)P (x|ω) = F (x|0)
∑

m∈M
G(x|m, φm)wm, wm = p(ω)f(m).

As the background distribution F (x|0) cancels in the Bayes formula we obtain

p(ω|x) =

∑
m∈Mω

G(x|m, φm)wm∑
j∈M G(x|j, φj)wj

=
∑

m∈Mω

q(m|x), ω ∈ Ω. (15)

q(m|x) =
wmG(x|m, φm)∑
j∈M wjG(x|j, φj)

, x ∈ X . (16)

Thus the posterior probability p(ω|x) becomes proportional to a weighted sum of
the component functions G(x|m, φm) each of which can be defined on a different
subspace. In other words the input connections of a neuron can be confined to an
arbitrary subset of input nodes. The structural mixtures (14) can be optimized
by means of EM algorithm in full generality (cf. [3] -[6]).

In view of Eq. (15) the structural mixture model provides a statistically correct
subspace approach to Bayesian decision-making. In particular, considering Eq.
(15), we can write the decision function (2) equivalently in the form

d(x) = ωk :
∑

m∈Mωk

q(m|x) ≥
∑

m∈Mω

q(m|x), ∀ω ∈ Ωk, x ∈ X . (17)

Remark 4.1. Applying binary classifier (5) to the multiclass problem of Remark
3.1, we can write (cf. (4), (6), (7))

Δ(x) = {ωk} : p(ωk|x) ≥ p(Ωk|x) = 1 − p(ωk|x), x ∈ X (18)

and, after substitution (15), we obtain the following equivalent form of Eq. (18)

Δ(x) = {ωk} :
∑

m∈Mωk

q(m|x) ≥ 1
2
, x ∈ X . (19)

Condition (19) is stronger than (17) and, unlike the multiclass decision function
(17), it may happen that no class will be identified by the binary classifiers
(18) for a given x ∈ X . However, the two different decision functions (17) and
(19) will perform comparably in multidimensional problems. In high dimensional
spaces the mixture components F (x|m) in (14) are almost non-overlapping and
therefore the conditional weights q(m|x) have nearly binary properties by taking
values near zero or one. It can be seen that if for some m0 ∈ Mωk

the value
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q(m0|x) is near to one then both the multiclass and binary classifiers (17) and
(19) will decide equally d(x) = Δ(x) = ωk. In numerical experiments we have
obtained false positive and false negative frequencies differing in both schemes
in several units only. �

The structural mixture model (14) is particularly useful to identify the properties
by means of the one-class-classifier condition (8). In view of definition of the
background distribution F (x|0) and considering the properties θ = {ω}, ω ∈ Ω
defined by numerals, we can write (cf. (8), (12), (14)):

πω(x) = log
[

P (x|ω)∏
n∈N Pn(xn)

]
= log

∑

m∈Mω

G(x|m, φm)f(m) ≥ εω. (20)

The mean value of the criterion πω(x) is actually maximized by EM algorithm
since the background distribution F (x|0) is fixed and a priori chosen. Thus, hav-
ing estimated the conditional distributions P (x|ω) we can derive the threshold
values εω for each property ω ∈ Ω from the related log-likelihood function:

εω =
c0

|Sω|
∑

x∈Sω

πω(x) =
c0

|Sω |
∑

x∈Sω

log
∑

m∈Mω

G(x|m, φm)f(m). (21)

Here the coefficient c0 can be used to control the general trade-off between the
false positive and false negative decisions.

The proposed statistical recognition of properties based on the threshold con-
dition (20) is closely related to the mutually exclusive Bayesian decision making.
Note that by choosing ω ∈ Ω which maximizes πω(x) we obtain Bayes decision
function very similar to (17). The only difference is the missing a priori proba-
bility p(ω) which implies the latent assumption of equiprobable classes.

5 Numerical Example

To illustrate the problem of recognition of properties we have applied PNNs to
the widely used benchmark NIST Special Database 19 (SD19) containing about
400000 handwritten numerals. It is one of the few sufficiently large databases to
test statistical classifiers in multidimensional spaces. The SD19 digit database
consists of 7 different parts - each of about 60000 digits. They were written by
Census Bureau field personnel stationed throughout the United States, except
for one part (denoted as hsf4) written by high school students in Bethesda,
Maryland. Thus different parts of the SD19 database differ in origin and also
in the quality. In particular, the digits written by students are known to be
more difficult to recognize. Unfortunately, in the report [7] there is no unique
recommendation concerning the choice of the training and test set respectively,
except that the hsf4 data should not be used as a test set. A frequent choice of
the test set is to use numerals written by “independent” persons - not involved in
preparation of training data. However, the use of “writer independent” test data
is incorrect from the statistical point of view. The purpose of any benchmark data
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Table 1. Recognition of numerals from the NIST SD19 database by differently complex
structural mixtures. The classification error is given in the last row.

Experiment No. I II III IV V VI VII VIII

Number of Components 10 40 80 100 299 858 1288 1571

Number of Parameters 10240 38758 77677 89973 290442 696537 1131246 1462373

Classification error in % 11.93 6.23 4.81 4.28 2.93 2.31 1.95 1.84

Table 2. Classification error matrix obtained in the Experiment VIII. Each row con-
tains frequencies of decisions for test data from a given class. The last column contains
percentage of false negative decisions. The last row contains the total frequencies of
false positive decisions in percent of all test patterns.

CLASS 0 1 2 3 4 5 6 7 8 9 false n.

0 19950 8 43 19 39 32 36 0 38 17 1.1 %

1 2 22162 30 4 35 7 18 56 32 6 0.9 %

2 32 37 19742 43 30 9 8 29 90 16 1.5 %

3 20 17 62 20021 4 137 2 28 210 55 2.6 %

4 11 6 19 1 19170 11 31 51 30 247 2.1 %

5 25 11 9 154 4 17925 39 6 96 34 2.1 %

6 63 10 17 6 23 140 19652 1 54 3 1.6 %

7 7 12 73 10 73 4 0 20497 22 249 2.1 %

8 22 25 53 97 30 100 11 11 19369 72 2.1 %

9 15 13 25 62 114 22 3 146 93 19274 2.5 %

false p. 0.09% 0.07% 0.27% 0.20% 0.17% 0.23% 0.07% 0.16% 0.33% 0.35% 1.84%

is to test the statistical performance of classifiers regardless of any “practically
useful” aspects. For this reason the statistical properties of the training- and test
data should be identical since otherwise we test how the classifier “overcomes”
the particular differences between both sets. In order to guarantee the same
statistical properties of both training and test data sets we have used the odd
samples of each class for training and the even samples for testing. We have
normalized all digit patterns (about 40000 for each numeral) to a 32x32 binary
raster. In order to increase the natural variability of data we have extended the
training data sets four times by making three differently rotated variants of each
pattern (by -10,-5,+5 degrees) - with the resulting sets of about 80000 patterns
for each numeral. The same procedure has been applied to the test data, too.

First, considering the problem of mutually exclusive classes, we have used
the training data to estimate the class-conditional mixtures for all numerals
separately by means of EM algorithm. Each digit pattern has been classified by
the a posteriori probabilities computed for the most probable variant of the four
rotated test patterns, i.e. for the variant with the maximum probability P (x).
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Table 3. Identification of properties (numerals) by means of one-class classifier. Each
row corresponds to one test class, the columns contain frequencies of the identified
numerals respectively.

CLASS 0 1 2 3 4 5 6 7 8 9 false n.

0 18815 2 954 23 30 292 76 0 406 103 6.8 %

1 6 21857 55 46 2756 111 52 4436 5039 410 2.2 %

2 4 9 18660 105 5 2 6 6 207 3 6.9 %

3 6 2 43 18971 1 1733 0 12 3177 373 7.7 %

4 1 0 6 1 18494 5 5 83 265 3229 5.5 %

5 7 2 4 918 0 17211 35 0 1246 282 6.0 %

6 50 10 30 0 60 888 18833 0 360 1 5.7 %

7 1 5 601 324 209 4 0 19817 242 6735 5.4 %

8 9 13 22 620 19 289 6 5 18201 154 8.0 %

9 3 4 6 70 1722 90 2 1060 1266 18667 5.6 %

false p. 0.0% 0.0% 0.9% 1.0% 2.4% 1.7% 0.1% 2.8% 6.1% 5.6% 6.0%

This approach simulates a biological analyzer choosing the best position of view.
Table 1 shows the classification accuracy of differently complex mixture models,
as estimated in eight independent experiments. The total numbers of mixture
components and of the component specific parameters (

∑
m

∑
n φmn) are given

in the second and third row of Tab. 1 respectively. The last row contains the
classification error in percent. It can be seen that the underlying mixture model
is rather resistant against overfitting.

Table 2 comprises detailed classification results of the decision function from
the Experiment VIII (cf. Tab. 1, last column) in terms of error frequency matrix.
Each row contains frequencies of different decisions for the respective class with
the correct classifications on diagonal. The last “false negative” column contains
the error frequencies in percent. Similarly, the last “false positive” row of the
table contains frequencies of incorrectly classified numerals in percent.

Table 3 shows how the properties (numerals) can be identified by means of one-
class classifier (20). The threshold values have been specified according to the Eq.
(21) by setting c0 = 0.75 after some experiments2. Each column contains frequen-
cies of decisions obtained by the one-class classifier (20) for the respective numeral
(first row). Hence, the numbers on the diagonal correspond to correctly identified
numerals. The last column contains percentage of false negative decisions defined
as complement of the correctly identified patterns. The last row contains percent-
age of the false positive decisions which correspond to incorrectly identified nu-
merals. Note that the only difference between Tables 2 and 3 is the information
about the mutual exclusivity of the recognized numerals which is not available in
case of properties. As the a priori probabilities of numerals are nearly identical,
the resulting tables reflect the net gain provided by the Bayes formula.

2 A validation set would be necessary to optimize the trade-off between the false neg-
ative and false positive decisions and also the underlying mixture complexity.
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6 Concluding Remark

We propose to identify properties by means of one-class-classifier based on the
log-likelihood ratio which compares the conditional probability distribution of
the “target” property with the product of univariate marginals of the uncon-
ditional background distribution. The only information about the “negative”
properties is contained in the global univariate marginals of involved variables.
In the numerical example we compare the problem of identification of properties
with the standard “multiclass” Bayes decision function. The proposed identifica-
tion of properties performs slightly worse than Bayes rule because of the ignored
mutual exclusivity of classes. On the other hand recognition of properties should
be more advantageous in case of non-exclusive classes. The method is applicable
both to the non-exclusive and exclusive properties and provides a unified ap-
proach to recognition of properties and feature extraction in the framework of
probabilistic neural networks.
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